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Input Skills:

1. Define: free particle, harmonic function, phase factor, lifetime.

2. Solve second order differential equations and differentiate.

3. Unknown: assume (MISN-0-383).

Output Skills (Knowledge):

K1. Define: eigenfunction, eigenvalue, stationary state, operator, lin-
ear operator, commutator or commutator bracket, expectation
value.

K2. Write the S-equation for a particle in both 1 and 3 dimensions,
with or without a potential present, and write the wave function
Ψ which solves the free-particle equations.

K3. Write an expression for the probability density in 3 dimensions,
given a normalized wave function Ψ.

Output Skills (Rule Application):

R1. Calculate the expectation values of operators in both the coordi-
nate and momentum representations.

R2. Calculate the commutators of the operators listed in table 4-2 in
both coordinate and momentum space representations.

Output Skills (Problem Solving):

S1. Derive the time-independent Schrodinger equation (4.54) by the
technique of separation of variables, and write the time-dependent
wave function Ψ(r, t) in terms of the time-independent wave func-
tion and the energy E.

S2. Show that the expectation value of the Hamiltonian in a stationary
state is constant in time and equal to the energy eigenvalue.

External Resources (Required):

1. E. E.Anderson, Modern Physics and Quantum Mechanics,
W.B. Saunders (1971).
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THE SCHRÖDINGER EQUATION

by

R. Spital

1. Introduction

In previous units, we introduced the wave function Ψ. Since Ψ con-
tains all the information about the location of a particle in space and
time, its calculation from the dynamics (interactions or forces present) is
the most fundamental problem in quantum mechanics. We attack this
problem through the Schrodinger equation, a differential equation for Ψ
which we introduce in this unit.

We shall also introduce the notion of linear operators. In quantum
mechanics, each observable is represented by such an operator; and the
possible results of a measurement are directly related to the outcome of
operations with the appropriate operator.

Since the material we shall cover in this unit is crucial for our later
work, the student should study this unit with special care.

2. Procedures

1. Read section 4.9. The free particle equations referred to are equations
(4.39) and (4.41); they are special cases of equation (4.42) and its 1-
dimensional cousin. Note that V in general is a function of position
and so depends on x or ~r.

This is our first contact with the most important operator in the world,
the Hamiltonian H. (An operator changes one wave- function into an-
other, or, more generally, one state into another. The wavefunction
Ψ is the coordinate representation of the state of the particle. The
momentum space wavefunction, φ, is the momentum space represen-

tation of the state. The state exists independently of the particular
representation used to describe it.) Note that H determines the time-

development of the wavefunction through the Schrodinger equation (S-
equation).

2. The solutions are equations (4.36) and (4.40).

3. Equation (4.44) of section 4.10 is the required probability density. The
rest of section 4.10 is optional; it essentially shows that it is consistent
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with the S-equation to treat |Ψ|2 as a probability density.

4. Read section 4.11 to obtain the definitions needed. Note that the same
operator has different forms in different representations. However the
physical quantities of interest are the matrix elements of the opera-
tors which are independent of the representation chosen. The matrix
element of an operator A between two states a and b is defined by

< a|A|b >≡

∫

Ψ∗

a(~r, t) (AΨb(~r, t) dτ

=

∫

φa(~p, t) (Aφb(~p, t)) dpxdpydpz ,

where Ψa,b(ψa,b) are the coordinate (momentum) space representations
of the states a and b.

Exercise: Verify the second equality for the momentum and position
operators.

5. Study and memorize table 4-2 except or the last line which is incorrect.
The energy operator 25 the Hamiltonian H, whose coordinate repre-
sentation, −h̄2∇2/2m+ V (~r) you have already seen. What should its
momentum representation be? The S-equation connects H with the
time-derivative, but the energy operator is H.

6. Solve problem 4-21 to gain practice in calculating expectation val-
ues. Note the definition of the uncertainty in an operator, ∆A ≡
√

< (A− < A >)2 >, introduced in equation (4.51). This is the more
rigorous definition of uncertainty alluded to in Unit 3.

7. Solve problem 4-22 to gain practice in calculating commutators and an
understanding of the fact the operators in general do not commute–
THE ORDER IN WHICH YOU APPLY THEM IS IMPORTANT!

The question at the end of the problem is very important; and its
answer shows that operators have an algebra (properties under multi-
plication) which is independent of the representa- tion chosen.

8. Read section 4-12 through the end of the paragraph directly below
equation (4.55). Study the steps leading to equations (4.54) and (4.55)
and make sure you can reproduce them.
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9. Read the rest of page 151 and continue through the end of the ex-
ample on page 152. In general, an eigenvalue need not be real as
indicated in the text. However, eigenvalues of operators corresponding
to observables are always real, since they represent possible results of
a measurement.

10. Read the remainder of section 4-12. You may omit the proof of the
eigenvalues of H, i. e. the possible energies of the system, are real. In
the proof at the top of page 153, the first step should be

< E >=

∫

Ψ*(~r, t) (HΨ(~r, t)) dτ .

The next step follows from the S-equation.

This proof fulfills Output Skill S2. As an exercise, prove the following
more general statement:

Let ΨE(~r, t) be a stationary state of energy E. Let Q be an operator
such that QΨE(~r, 0) = qΨE(~r, 0); i. e. ΨE(~r, 0) is an eigenfunction
of Q with eigenvalue q. Then ΨE(~r, t) is an eigenfunction of Q with
eigenvalue q for all t. Moreover, the expectation value of Q for the
state represented by ΨE is constant in time and equal to q.
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